
Power Systems and Thermal Management for the UK Space
Design Competition

Theo Macklin

William Laver

Version 1.0

UK Space Design Competition

March 8, 2023

Contents

1 Introduction 1

2 Power Systems 1

2.1 Nuclear Power . 2

2.2 Photovoltaic . 5

2.3 Solar Thermal . 8

3 Space as a Heat Sink 9

3.1 Emitted Heat . 9

3.2 Direct Solar Thermal Heat Received . 9

3.3 Indirect Solar Thermal Heat Received . 10

3.4 Planetary Thermal . 10

3.5 Net Heat Rate . 11

3.6 Thermal Equilibrium . 11

4 Radiator Design 11

4.1 Primary Heat Load . 12

4.1.1 Nuclear . 12

4.1.2 Photovoltaic . 13

4.1.3 Solar Thermal . 13

4.2 Atmospheric Loop Heat Load . 14

4.3 A Word on Heat Pumps . 15

4.4 Additional Loops . 16

5 Conclusion 16

A ThermalSystem.py 18

ii

1 Introduction

Power is an ever-present challenge for challenges at the regionals and nationals of the UK

Space Design Competition (UKSDC): it forms the backbone of life-support considerations as

well as being a significant limiting factor on the effectiveness of your settlement’s operations.

Being so critical to almost all designs, it was reasoned that we should provide a little more

support for the most common choices of power source within the UKSDC. The two power

sources options discussed in this report are by no means an endorsement of them, nor

should they limit your imagination.

Despite this, the mathematics of heat rejection in space, are more fundamental and should

be obeyed, no matter your power source. This is an often-neglected, often unstated re-

quirement within the request for proposal. However, just because the customer has not

specifically asked you to detail how you will handle this challenge, it does not mean that the

problem does not exist! Just as we would expect you, without a specific prompt, to explain

how you will dispose of the irreducible waste generated by your waste processing system,

we expect you to dispose of your waste heat. The maths for heat dispation has been formu-

lated in such a way to be largely independent of your choice of power source, allowing for

multiple options to be easily compared during the competition.

2 Power Systems

The concept of power is one whose technical meaning is often lost in an era where it is

possible to flip a switch and have things work. In this guide we will use the technical definition

of power as “energy transferred per second”. This leaves the equally nebulous definition

of energy, which we will simply acknowledge as a “wibbly-wobbly. . . thing measured in

Joules”!

In practice, we often consider electrical power or mechanical power (the turning of a shaft

that is able to be made to do things without stalling) to be the be-all-and-end-all of our supply

requirements. In practice, we must almost always convert some other kind of energy into our

target form: in a solar power plant, photonic energy is absorbed into a band-gap potential

which then drives an electrical potential, from which we can source an electrical current; in

a wind-turbine, the wind is decelerated as it is forced to push on a blade, which applies a

moment on an axle, which turns a gearbox, which turns a generator; in a fossil-fuel plant,

1

chemical energy is released to “high-grade heat” which boils high pressure water, which

expands through a turbine, turning it and a generator.

In each of these conversions, the second law of thermodynamics demands that we lose

some of our energy to random vibrations of the atoms involved – “low grade heat”. This

is why a gearbox will feel hot while running, or your computer needs a fan to crunch all

those ones and zeros. In some cases, the second law can be made to tell us how the

minimum amount of energy we have to lose during a conversion, and engineers chase down

a target, while in others cases, engineers simply seek to make a process as loss-less as

possible.

2.1 Nuclear Power

Even if you already know how a nuclear power station creates electricity you should not skip

this section, as it is important that you familiarise yourself with the terminology that will be

used in this guide.

Figure 1: Nuclear power plant diagram, image from from Martin, 2022.

2

Figure 1 shows the basic workings of a nuclear fission power plant. Starting from the left,

the nuclear fuel releases heat that is transferred to the primary fluid in the reactor (red/grey

liquid), this primary fluid cools the nuclear material to keep the reactor in a safe temper-

ature range and extracts the thermal energy. The primary fluid then transfers heat to the

secondary fluid (usually water) in a heat exchanger to create steam. This high-pressure

steam is then used to drive a turbine or a series of turbines, expanding and losing energy

as it drives the motion of the turbine. The secondary coolant is eventually exhausted of us-

able thermal energy and is turned back into water in the condenser. The water, unlike the

steam, is incompressible and so vastly more efficient to pump back up to a high pressure

to flow back into the heat-exchanger (which is often called a steam generator in the nuclear

industry).

Jumping back in the cycle, the condenser must have the steam’s remaining heat removed by

a third fluid - since heat must always travel from hot to cold. This third fluid (typically a liquid)

needs a way to reject heat too: this mechanism is called the heat-sink of a power-plant and

it is the lowest temperature in the whole plant. This heat-sink is usually a cooling tower or a

large body of water, where the low temperature of the air, sea, or river serves to receive heat

from the condenser’s coolant fluid. However, none of these options are possible in space or

on planets without abundant water or a dense atmosphere.

A fusion power plant, Figure 2, differs only on the heat-generation side and the possible

substance of the primary coolant, which may use a liquid metal coolant (this is an option

for some fission reactors, too - it’s complicated on the reactor side!). In either case, the

secondary coolant, the one that boils to steam, is the working fluid in a Rankine cycle.

Both of the nuclear subcontractors require you to quantitatively consider the cooling of the

reactors that they will supply. In order to improve realism and reward effective designs,

the efficiency of these reactors at generating electricity is made a function of the Carnot

Efficiency (It’s French - the “t” is silent).

3

Figure 2: Speculative nuclear fusion power plant diagram, image from from McCracken

and Stott, 2005. The condenser and ultimate heat-sink is neglected from this diagram.

The Carnot efficiency is a theoretical maximum amount of work that can be extracted from

a heat engine (like the Rankine cycle that we’re using) and is dictated by two temperatures:

the temperature of the hot temperature reservoir, TH (given by the subcontractor), and the

cold temperature reservoir, TC (dictated by how you design your heat sink). The greater

the difference between these two temperatures the more work that can be theoretically ex-

tracted. The Carnot efficiency is represented by the symbol ηC , and is given by Equation 1,

which should always give you a result between zero and one. You must use temperatures in

kelvin.

ηC(TH , TC) = 1− TC

TH

(1)

In our use, the plant (the name for the heat-source, primary coolant loop, heat exchanger,

secondary-coolant plumbing, turbine, condenser, generator, etc.) that you’re provided with

works at 70% of the Carnot efficiency to reflect the parasitic energy losses that happen in real

life. This is actually a very high proportional efficiency - many plants do not even achieve

4

50% of the theoretical Carnot efficiency. We shall denote this proportional-efficiency as

ηP .

Factoring these losses in, your thermal efficiency (overall actual efficiency) of converting the

thermal-power (heat output) of reactor into usable mechanical work/electricity, denoted ηT ,

is going to be:

ηT (TH , TC) = ηP · ηC(TH , TC) (2)

So, to work out the usable mechanical/electrical power, W , generated by a reactor and plant

setup you have to take the thermal-power output of the reactor, Q (in Watts, kW, MW, or

GW), and multiply it by the thermal efficiency of your system:

W (TH , TC) = ηT (TH , TC) ·Q (3)

It is important to recognise that, even if we only extract a fraction of the thermal-power as

useful work, since energy can neither be created nor destroyed, the rest of the thermal-power

must remain as heat. In fact, this is the heat that we remove from the condenser via our heat

sink, QW , which is a temperature marginally above that of our cold reservoir: typical rules-of-

thumb suggest a temperature drop change of 10 kelvin over a heat exchanger, meaning that

QW is extracted at 10K above the cold reservoir temperature. The numerical value of QW

can be calculated via Equation 4. You will notice that, in many cases, this value is greater

than the useful power that we extracted!

QW (TH , TC) = (1− ηT (TH , TC)) ·Q (4)

Furthermore, while we have extracted useful work from our reactor, the majority of use-cases

for it simply convert electricity into heat as a byproduct of its operation: e.g. computers get

hot while they run, metal being cut on a lathe gets hot, rocks being smashed get hot, etc.

There are a few cases where power is embedded into new forms, such as charging batteries

which are then shipped away, laser beams, or the creation of high-energy materials which

will not embed all of the heat associated with the power into the overall space-settlement.

The heat-load for useful power is accounted for in Section 4.2.

2.2 Photovoltaic

This guide is not going to explain the ins and outs of how photovoltaic systems work, because

there are plenty of guides on the internet that will do a far better job of it! Solar power is a

5

popular choice within the UKSDC for many reasons, chiefly revolving around its simplicity to

integrate into a design and its nominally low operational overhead. While We don’t deny that

solar is an excellent option in many circumstances, there are significant complications that

are often neglected in the UKSDC which we do consider when judging. In addition to their

heat dissipation, which will be the subject of this section, we do expect you to consider solar-

panels degradation, radiation damage risk, and cost. Furthermore, you should consider how

these factors vary between different types of photovoltaic system.

The efficiency of a solar panel is a complicated quantity to define, as it will depend on both

internal factors, such as temperature and age, and external factors, such as the angle of

illumination. It is acceptable, for the UKSDC, to find a well-evidenced value for theoretical

maximum efficiency, ηlab and to take 80% of its value to account for non-optimal illumination

(e.g. a 33.0% efficient panel would be treated as 26.4% efficient). We will define this as the

“nominal efficiency” of the panel, ηN . Even this large reduction is highly optimistic.

Accounting for internal factors is equally important, as these can cause even greater reduc-

tions in efficiency. Modern panels lose an increment of ∼0.5% efficiency per year; e.g. our

ηN = 26.4% panel would be 25.9% efficient after one year of use, and only 16.4% efficient af-

ter ten years. We do not recommend reducing this value when accounting for technological

improvements. The reason for our caution on this front is the violent radiation environment

of outer-space (and on any planet in the solar system without an atmosphere). Indeed, the

author would recommend scaling this value up for locations closer to the sun than Earth:

Venusian orbit should use a value of 1.0% per year, and the orbit of Mercury a value of 3.4%

per year. As a general rule for sites closer to the Sun than Earth, divide the value at Earth

by the square of the distance to the Sun in astronomical units. While this seems harsh, it is

physically informed, and you will get a lot more power per square meter of panel as you get

closer to the Sun. The negative, per-unit form of the degradation rate with age will be written

as ca (i.e. ca at mercury would be -0.034 per year).

The second internal factor that we would like you to consider in the UKSDC is temperature.

The efficiency change can be approximated as linear with respect to the reference temper-

ature for ηN , which is usually 25◦C. Below this temperature efficiency increases and above

it, reduces. There will be a limit on the efficiency increase, which you should limit to the

addition of 5%, but there is no limit on the degradation. Modern solar panels swing between

-0.25 and -0.43% per kelvin per above nominal (Svarc, 2022).

6

It is feasible that this temperature dependency could be reduced in future, potentially to a

value of -0.2% per kelvin for all photovoltaic cell types. The negative, per-unit thermal sen-

sitivity will be denoted cT (i.e. a nominal value of -0.002). To continue the example, should

our ten year old solar panel be raised to a temperature ten degrees above its reference, its

efficiency would further reduce to 14.4%. It should also be noted that solar panels also have

a limit on their operational temperatures: for the UKSDC it is reasonable to assume that this

range is from -100 ◦C to +150 ◦C which is slightly more optimistic than in real life. Within the

world of UKSDC, you should assume that a panel is completely destroyed if it goes beyond

its operating temperature range, or its efficiency hits zero at any time.

Summing all these factors gives the following expression for the overall panel efficiency, ηo
for a panel of age t years, an operating temperature, TC , and a reference temperature Tref .

The reason for the subscript on TC will become clear in Section 4.1.

ηo(TC) = 0.8ηlab + cat+ cT · (TC − Tref) (5)

If you can justify to your CEO reasons that the prescribed values might be different, they will

happily invite you to discuss your ideas with one of the judges! This efficiency means that

the power output, W from your panels will be given by Equation 6, in which qs is the power

from the sun in W/m2, and Aproj
S is the “projected area” of the solar panel with respect to

the sun. The solar intensity, qS, can be found via the inverse square law or found online for

the distance from the sun that is of interest. Equation 7 gives a simple calculation for the

projection of an area, AS, whose surface normal is at an angle, α, to the direction of light

from the Sun. Figure 3 similarly depicts this concept for a 3D object: a surface turned at a

right angle to the sun will no longer be illuminated by it.

W (TC) = ηo(TC) · qS · Aproj
p (6)

Aproj
S = AS · cosα (7)

The light that strikes the surface of the panel and that is not converted into useful work will

either be reflected or converted into heat within the panel. The fraction that is reflected

contributes quite significantly to the efficiency of the panel in most reported values, and so

reflection must be accounted for when estimating the heat-load. It is reasonable, if opti-

mistic, to assume that 5% of the unconverted energy is reflected away for the high-efficiency

panels favoured in the competition, and so Equation 8 gives the waste heat, QW within the

7

Figure 3: Depicted of the illumination of an object in different positions relative to a planet

and to the Sun to demonstrate the concepts of projected areas.

panels.

QW (TC) = 0.95 · (1− ηo(TC)) · qs · Aproj
p (8)

Similarly to the nuclear power option, the useful energy will also be turned into heat upon its

use. This is handled in Section 4.2.

2.3 Solar Thermal

Solar thermal power systems convert the heat from the sun into power via the smae kind of

Rankine cycle has a nuclear reactor. These systems have the advantage of not requiring

expensive semiconductors and they are less vulnerable to degradation over time.

Solar thermal systems have an absorption surface which faces the sun to collect heat: this

acts as the hot reservoir at temperature TH . TH must be calculated via energy balance

methods described in Section 3.6 from the direct solar heating described in Section 3.2. In

the course of the energy balance, the heat rate that you wish to pull from the absorption

surface must be specified.

Solar thermal systems also feature a radiator, which like a nuclear system, is shaded and

emits waste heat out into space. The mathematics for the operation of a solar-thermal

8

plant are, beyond the need to specify Q in order to then calculate TH , the same as nuclear

plants.

3 Space as a Heat Sink

While the UKSDC considers more than just space stations, the dissipation of heat on a

planetary surface or attached to an asteroid pose unique modelling requirements based on

location, whereas free-space is generic enough to be summarised here. We have discussed

how power generation generates heat, and now we have to discuss how we’ll get rid of it. If

we don’t get rid of it, that thermal energy will accumulate onboard and make everyone quite

uncomfortable quite quickly.

3.1 Emitted Heat

To dissipate heat from a spacecraft you’re going to need radiators, these radiators are heated

using fluid and then emit radiation in the infrared band, with a power emitted, QE, dependent

on the temperature, T , material’s emissivity, ε, and the emitting surface area, A.

QE(ε, T, A) = εσAT 4 (9)

σ is the Stefan-Boltzman constant, which equals 5.669 ×10-8. This equation makes the

assumption that the radiators will be “isothermal” - possessing the same surface temperature

everywhere on their surface. It is also important to remember that both sides of a surface

will radiate heat, so a flat plate contributes double the area of a single face.

3.2 Direct Solar Thermal Heat Received

Unfortunately, objects in space, like radiators, absorb radiation as well as emit it. This must

be accounted for when calculating the heat dissipation from your radiators and the biggest

contributor to this heat-load is from the sun striking the surface. This is given by Equation 10,

in which aS is a property known as the solar absorptance of the emitting surface, Aproj
S is the

sun-facing surface, equivalent to solar-panel area, and qS is as previously defined.

QS = qS · aS · Aproj
S (10)

9

The surface area in this case is single-sided, as solar illumination will only be incident on

a single side of a flat plate. In the case of solar-panel systems, this heat generation term

is equivalent to QW , and so should be ignored to prevent double-counting of the solar heat

load. This is expanded upon and written in context in Section 4.

3.3 Indirect Solar Thermal Heat Received

You may also want to consider the solar radiation which is reflected off the surface of a

nearby planet back at your radiating surface. This heat contribution, Qa, is given by Equa-

tion 11, in which a, Aproj
p , ϕ, RP , and Rs/c are the planetary albedo, projected area of the sur-

face relative to the planet, the angle between the planet-Sun line and the planet-spacecraft

line, the radius of the planet, and the distance from the planet to the spacecraft respec-

tively.

Qa = a · qS · aS · Aproj
p · cosϕ ·

(
RP

Rs/c

)2

(11)

Keep in mind that this formula is only non zero when the spacecraft is on the light side of the

planet, on the dark side there is no solar radiation to reflect. Calculation of this component is

an added bonus and typically unnecessary at Regionals level, but is expected at Nationals

for at least the closest planet to the settlement.

3.4 Planetary Thermal

You can also consider the amount of a nearby planet’s thermal emission that is captured, QP ,

using Equation 12, where ε is the emissivity of the receiving surface and qP is the thermal

power incident on the sun-facing side of the planet divided by its total area.

QP = ε · qPAProj
P ·

(
RP

Rs/c

)2

(12)

This formula is an adequate approximation for when the spacecraft is on the day-side or

night-side of the planet. The use of ε in this equation is a reasonable simplification: in

actuality, the thermal absoptivity can be different from the emissitity, but for a surface that

has reached a steady-state, they become the same. This saves you from having to research

yet another coefficient!

10

3.5 Net Heat Rate

Bringing all these terms together, we get that:

Qnet = QE(ε, T, A)−QS −Qa −QP (13)

Where Qnet represents the total heat emitted from the surface. As each of the component

terms are positive, if Qnet is positive the surface is emitting heat out into space. If Qnet is

negative, then the surface is receiving heat. This sign-convention is actually reversed from

that used in engineering: in engineering we always say that heat that comes into a system is

positive and heat leaving a system is negative, but the other way around is more convenient

for this application!

If we wish to consider more radiators, stars, and planets/bodies which contribute to our heat

load, we can include them in our sum:

Qnet =
Radiators∑

r

QE(εr, Tr, Ar)−
Stars∑
s

QS,s −
Bodies∑

b

(Qa,b +QP,b) (14)

This is worth doing if designing a spacecraft that will operate within the Earth-Moon system.

To track all of the heat-load contributions, it is recommended that you make a spreadsheet

or a Python program.

3.6 Thermal Equilibrium

If there is no active heat-generation on-board the spacecraft, we will reach a passive, “equi-

librium state”, where the energy received is balanced by the energy emitted. This is the case

where Qnet = 0 and so the equilibrium temperature of the emitting surface, for fixed values

of ε and A, is that which gives QE(ε, T, A) = QS +Qa +QP (assuming a single radiator and

body).

4 Radiator Design

In order to design your power system and its required cooling system, we recommend that

you research and collect the relevant information about the settlement’s location. This data

would include the solar intensity, the albedo of any nearby planets, the radius of that planet

and your distance from it, and if possible the thermal emission of that planet.

11

An effective way to work is to negotiate space for scalable radiators within the structure and

to decide how many of them you want. You should seek to minimise the projected area of the

radiators facing the Sun and, as a secondary consideration, any nearby planets. You should

also research and choose a coating/material for your radiators to maximise emittance and

minimise absorptance.

If you are using a heat-based power system (nuclear), you should select which reactors

you think would be appropriate for your settlement and make a note of their hot reservoir

temperatures. Collate all of these pieces of information in Excel or Python and implement

the heat rate equations from the previous section. This rest of section will discuss how these

equations should be combined to assist in radiator design.

4.1 Primary Heat Load

The equations that we have presented must be handled slightly differently in the cases of

nuclear solar power systems. The reason for this is that the heat-load for solar panels

comes only from the unutilised solar illumination, which is an additional heat load in the case

of nuclear power. In both cases, it is important to note that we will handle the heat-load from

the useful power that we have extracted, W , with a separate calculation.

4.1.1 Nuclear

For a nuclear system, heat is released from nuclear reactions in addition to the heat ab-

sorbed in its radiators. This means that the Qnet from the panels must be equal to this

additional heat rate, QW , otherwise the total amount of energy on the spaceraft would in-

crease over time - i.e, the heat we’re emitting overall is equal to the waste heat from the

reactor system. For a single radiator and set of additional sources, this gives Equation 15,

or its rearranged form, Equation 16.

QW (TC) = QE(ε, TC , A)−QS −Qa −QP (15)

0 = QE(ε, TC , A)−QW (TC)−QS −Qa −QP (16)

Equation 16 is a form of the power-balance equation that has been made suitable for root-

finding methods to be employed - where an appropriate value of TC must be found to make

the left-hand-side equal to zero. If you have conducted your analysis in Excel, you could

make TC an initial parameter and have a cell output the value of the the left-hand-side of

12

the Equation 16. You can then manually iterate until the left-hand-side is made as close to

zero as possible. Alternatively, you could make use of the “Goal Seek” function in Excel (in

Data>What-If Analysis>Goal Seek) to automatically find the minimising value of TC . If you

have conducted your analysis in Python, SciPy ’s root-finding functions can take in a function

of TC with references to global values of ε and A and return the balancing value of TC .

4.1.2 Photovoltaic

As solar illumination is effectively converted directly into electricity in a solar cell, the only

heat “generated” as a by-product of the system is the solar energy that is absorbed uselessly

by the panel. Factoring this behaviour into a model to determine the amount of power that

will be generated is actually easier than for a nuclear system. The direct solar thermal heat

received term, QS, must be removed from Equation 13, as it is now excessive (because some

of that energy is converted to electricity). This term is replaced by the QW for solar systems,

Equation 8, which is our model for solar heat absorption. There is no additional heat to

dissipate, and so the root-finding form of the equation natural emerges as Equation 17.

0 = QE(ε, TC , A)−QW (TC)−Qa −QP (17)

In this case, you should pay careful attention to the panel areas in each term, as some will

absorb or emit heat from both sides, and some only from one side.

4.1.3 Solar Thermal

Solar thermal power becomes more difficult to keep track of as you will have radiators that

act to absorb heat and to radiate it away. For the absorbing panel, assign Qnet in Equation

13 or 14 to be the thermal power rate that you would receive from a reactor (Q), but as a

negative because the surface is receiving power. E.g. if you want to pull 50 MW of heat into

your system, set Qnet to - 50×106. Converge this system to find the equilibrium temperature

of the surface, which is governed by the emissivity. This temperature will act as the TH for

Equations 1, 2, 3, and 4.

It is doubly important to note that the waste-heat from the power system will be emitted at

TC , which is the temperature of the cold-side radiator, which should be in the shadow of the

station. We can follow the same procedure as for the nuclear reactor’s radiators for the cold

side of the system: converging to find the cold temperature, acknowledging the dependence

of QW on the value of TC .

13

4.2 Atmospheric Loop Heat Load

We have discussed already that even our useful power must eventually become heat, so

there is the obvious question of why we have not simply factored it into the emission demand

of our primary heat load radiators. The reason for this is that these loads typically dump

their heat into the atmosphere within the settlement by the nature of their use in settlement

operations. This means that the dissipation of W Watts, kW, MW, or GW of heat is dumped

into to the human environment. The atmosphere will, in turn, then use an external radiator

as its heat sink. Given that we have to keep the atmosphere within the settlement at a

comfortable temperature, we do not want to bundle the reactor heat-source and atmospheric

heat-source together and get a radiator at, e.g., 60 degrees Celsius, which would imply an

even hotter atmospheric temperature, which some saunas would envy!

Within the UKSDC, we call the use of power and the control of its heat load the “operational-

loop”, with the loop that features the habitable atmosphere being called the “atmospheric

loop”. The heat load within the atmospheric loop comes from more than just the useful work

from our power system, W , however: humans also produce a lot of heat, QH .

If all consumable calories are produced on-board under power from the reactor or solar

power system, and a completely closed-loop waste processing cycle is in place, the human

heat source, QH , can be ignored since all of their energy is ultimately coming out of the

useful power. An assumption here is that a portion of W has been assigned to produce

foodstuffs, with that portion being equal to the total energy investment necessary to power

all the humans!

If some waste is not recycled and is stored on-board or shipped out, the energy embedded

in this waste can be subtracted from QH as it is not being released as heat. This is very

difficult to calculate but for biological waste, it is approximately equivalent to its enthalpy of

combustion. In most cases, it is not worth factoring this out, unless it is significant.

If food or combustibles are imported to the spacecraft/settlement, the energy they contribute

to the system must be accounted for: assume that an average human, fed entirely by im-

ported materials, will contribute 109 W of heat. This value does not reduce with reduction in

felt-gravity. If diets are partially composed of imported food-stuffs, scale these loads by the

fraction of imported goods in the diet.

If, as mentioned previously, power is beamed off the settlement, or exported in batteries or

14

energetic materials, this power or average power (for intermittent exports of stored energy),

WR, can be subtracted from W when designing the heat-sink. It is critical to acknowledge

that beamed power systems are very inefficient, and so for WR to be, for exmaple, lasered

away, a much larger part of the energy budget would have to be allocated to it.

With these values calculated, no convergence is necessary, instead find solving the following

for TC,O, the emission temperature of the operational-loop heat sink, remembering to recal-

culate the values of QS, Qa, and QP for the dimensions and materials of this heat-sink:

QE(ε, TC,O, A) = W (TC) +QH +QS +Qa +QP −WR (18)

4.3 A Word on Heat Pumps

Given that we typically favour a cooler atmospheric temperature which might imply an enor-

mous radiator, there is a viable option to make use of heat pumps to raise the “quality”

(temperature) of the heat at the expense of inputting useful work.

A heat pump will transfer heat-power equal to QMoved:

QMoved = ηPWin COPideal (19)

Where COPideal =
TU

TU−TL
, maxing out at about 10, ηP is the proportional efficiency of the

device (you may assume a high value of 0.70), and TU and TL are the upper and lower

temperatures within the device. COP stands for “coefficient of performance”, which is used

since this device takes in power and generates heat, rather than the other way around.

In practice, what this means is that Qmoved of heat-power is transferred from a fluid at a

temperature of TL to an upper temperature of TU by a power input of Win. The heat-pump

will dissipate Win at a temperature of TU . As heat must conduct into the pump, TL must be

taken as at least ten degrees cooler than the atmospheric temperature and TU must be at

least ten degrees higher than the temperature of the heat sink that the heat-pump is feeding,

TC . For the operational loop, if you divide your heat load (W (TC)−WR +QH) by ηP COPideal

, you can find the work that you’ll have to budget for the heat-pumps.

As the heat pump will convert its Win to heat at TH , it does not have to pump its own power.

Assuming that Win is being drawn from W , the following expression for the power consump-

tion of the heat pumps can be found (assuming that the heat pump is being used on the

15

atmospheric loop.

Win =
W (TC)−WR +QH

1 + ηP COPideal

(20)

This allows you to select any value of TC for the atmospheric-loop heat sink (or any operational-

loop heat sink), rather than just those at just-below comfortable temperatures. Be aware that

large temperature changes will dramatically reduce the COP and the heat-pump load will

dominate your power budget. You may need to iterate to ensure that you can power both

your settlement and your heat pumps.

It is also possible to use heat-pumps on your reactor heat sink: this may appear to allow you

to extract more power, but I’m afraid this will make you worse off overall as any extra power

you’ve generated will be more than consumed by the heat pumps!

4.4 Additional Loops

If it would be impractical for a specific system which converts a large part of W to dump

its heat into the atmosphere (e.g. mineral processing), or if a system prefers to operate at

a high temperature, it is viable and recommended for your settlement to include additional

operational heat loops which not coupled to the atmospheric temperature.

If you have multiple, separate power systems (e.g. multiple nuclear reactors), it may be

worthwhile to give each its own primary loop in order to ensure that if one goes down, it

does not impact the efficiency of the other (although you may want this).

if you choose to do this, you can include additional absorption surfaces or radiators and

treat each system individually using the equations in the previous sections. Remember to

separate out the power/heat contributions that are going into each radiator!

5 Conclusion

We are very aware that this document is quite heavy and it is important to reiterate that this

level of detail is only expected at the national finals. Thermodynamics is the most funda-

mental but often neglected or misunderstood aspect of space design, so we hope that this

document provides some clarity on how these calculations can be approximated. We have

entirely neglected discussion of how heat is transported internally, e.g. how atmospheric pro-

cessing gets its heat to the radiator, as it would make this guide even longer: we leave that

16

problem for your research and imaginations! If you have difficulties with any of the aspects

of this document, we encourage you to drop us an email or, on the day of a competition,

speak to a technical advisor.

References

Martin, W. (2022). Nuclear Power. Encyclopedia Britannica. URL: https://www.britannica.

com/technology/nuclear-power.

McCracken, G. & Stott, P. (2005). Chapter 1 - What Is Nuclear Fusion? Fusion. Burlington,

Academic Press, pp. 1–5.

Svarc, J. (2022). Most Efficient Solar Panels 2022. Clean Energy Reviews. URL: https:

//www.cleanenergyreviews.info/blog/most-efficient-solar-panels.

17

https://www.britannica.com/technology/nuclear-power
https://www.britannica.com/technology/nuclear-power
https://www.cleanenergyreviews.info/blog/most-efficient-solar-panels
https://www.cleanenergyreviews.info/blog/most-efficient-solar-panels

A ThermalSystem.py

The following code is able to apply many of the methods discussed in this report and has

been designed was a (relatively) user-friendly interface. it requires Python 3.10.0 or better to

run. An example set of thermal loops are given in the if name ... block (in which you can

safely write code to use the functions in the file). As copying the code from this document

might be a touch tricky, there is an uploaded script in the same location as this document:

this script has been uploaded as a .txt rather than a .py for safety. If you convert this file

extension, you can run it normally. Do double check that the code is the same as in this

document before changing the file extension!

from numpy import cos , deg2rad

from scipy.optimize import newton , toms748

class Location:

def __init__(self , distance_from_sun_au) -> None:

self.distance_from_sun_au = distance_from_sun_au

self.q_S = 1380.73 / (distance_from_sun_au **2)

class Surface:

stefan_boltzmann_constant = 5.670374419e-8

def __init__(

self ,

emission_area ,

sun_facing_area ,

emissivity = 0.5,

absorptance = 0.5,

angle_to_sun_deg = 0,

temperature_offset = 0,

) -> None:

"""

emission_area is the radiative area. This is often both sides of a plate.\n

sun_facing_area is the area that solar heating will act on. This is only ever one side

of a plate .\n

emissivity is what is says it is.\n

absorptance is the solar absorptance .\n

angle_to_sun_deg is the angle of the surface to the sun. An angle of 0 degrees means

that the normal to the surface is pointing directly at the sun. An angle of 90

degrees means that the plate is edge on and not illuminated .\n

temperature_offset is an offset in the isothermal temperature of the panel relative to

the perceived temperature of the system. This is useful for representing active

cooling of solar panels.

"""

18

self.emissivity = emissivity

self.absorptance = absorptance

self.emission_area = emission_area

self.sun_facing_area = sun_facing_area

self.sun_facing_area *= cos(deg2rad(angle_to_sun_deg)) if angle_to_sun_deg else 1

self.temperature_offset = temperature_offset

self.T = None

def set_T(self , T):

self.T = T + self.temperature_offset

##--Q_E

def radiated_heat(self , T):

T_perceived = T + self.temperature_offset

return self.emissivity * self.stefan_boltzmann_constant * self.emission_area * (

T_perceived **4)

##--Q_S

def direct_solar_thermal_heat_received(self , loc : Location):

return loc.q_S * self.absorptance * self.sun_facing_area

def __repr__(self):

return f"Temperature␣=␣{self.T:.1f}␣K"

def clean_surfaces_input(surfaces : Surface | list[Surface] | dict[str : Surface]):

if isinstance(surfaces , Surface):

surfaces = [surfaces]

elif isinstance(surfaces , dict):

surfaces = surfaces.values ()

elif isinstance(surfaces , list):

pass

else:

raise ValueError("Invalid␣format␣for␣’surfaces ’␣or␣’radiators ’:␣must␣be␣a␣Surface ,␣

list␣of␣Surfaces ,␣or␣a␣dict␣of␣Surfaces.␣Quitting.")

return surfaces

class HeatSource:

def __init__(self , q_w = 0) -> None:

self._q_w = q_w

self.T_C = None

def q_w(self , *args):

return self._q_w

def __repr__(self):

return f"Cold -Side␣Temperature␣=␣{self.T_C:.1f}␣K\nWaste␣Heat␣=␣{self.q_w():.1f}␣W"

class PowerSource(HeatSource):

def __init__(self , w = None , q_w = None) -> None:

19

self._w = w

super().__init__(q_w)

def w(self , *args):

return self._w

def __repr__(self):

return super ().__repr__ () + f"\nUseful␣Power␣=␣{self.w():.1f}␣W"

class Turbine(PowerSource):

eta_p = 0.70

def __init__(self , qt , T_H) -> None:

self.qt = qt

self.T_H = T_H

super().__init__ (0,0)

def eta_C(self , T_C):

return 1 - T_C / self.T_H if T_C < self.T_H else 0.0

def eta_T(self , T_C):

return self.eta_p * self.eta_C(T_C)

def w(self , T_C = None):

if T_C == None:

T_C = self.T_C

return self.qt * self.eta_T(T_C)

def q_w(self , T_C = None):

if T_C == None:

T_C = self.T_C

return self.qt - self.w(T_C)

def __repr__(self):

return super ().__repr__ () + f"\nHot -Side␣Temperature␣=␣{self.T_H:.1f}␣K"

class Reactor(Turbine):

reactors = {

"fission_frontiers" : {

"tarasque" : {"qt" : 1e9, "T_H" : 1300},

"guivre" : {"qt" : 2e9, "T_H" : 1100},

"peluda" : {"qt" : 1e9, "T_H" : 600},

"lindworm" : {"qt" : 500e6, "T_H" : 950},

"wyvern" : {"qt" : 250e6, "T_H" : 600},

},

"fusion_founders" : {

"standard_reactor" : {"qt" : 300e6 , "T_H" : 1300},

}

20

}

def __init__(

self ,

qt = None ,

T_H = None ,

brand = None ,

model = None ,

) -> None:

"""

qt is the thermal power in Watts if you are entering a custom reactor specification .\n

T_H is the hot reservoir temperature in Kelvin if you are entering a custom reactor

specification .\n

brand is the name of the reactor manufacturer for a standard installation. Either "

fission_frontiers" or "fusion_founders ".\n

model is the name of the reactor model for a standard installation. Fission Frontiers

offer: "tarasque", "guivre", "peluda", "lindworm", "wyvern", while Fusion Founders

offer: "standard_reactor" only.

"""

custom = qt and T_H

library = brand and model

if not custom and not library:

raise ValueError("Reactor␣is␣not␣adequately␣defined:␣both␣of␣’qt’␣and␣’T_H’␣or␣

both␣of␣’brand’␣and␣’model’␣must␣be␣complete!␣Quitting.")

elif custom and library:

raise ValueError("Reactor␣is␣over␣defined:␣both␣of␣’qt’␣and␣’T_H’␣or␣both␣of␣’

brand’␣and␣’model’␣must␣be␣complete ,␣not␣all␣of␣them!␣Quitting.")

elif custom:

super().__init__(qt , T_H)

elif library:

try:

reactor_data = self.reactors[brand.lower()][model.lower()]

super().__init__(reactor_data["qt"], reactor_data["T_H"])

except:

lines = [

f"Reactor␣’{model}’␣by␣’{brand}’␣cannot␣be␣found!␣The␣valid␣brands␣and␣

their␣models␣are:"

]

for brand in self.reactors.keys():

lines.append(f"\t{brand}:")

for model in self.reactors[brand].keys():

lines.append(f"\t\t{model}")

raise ValueError("\n".join(lines))

else:

raise ValueError ()

class SolarAbsorber(Turbine):

def __init__(

self ,

loc ,

21

qt : float | int | list[float] | list[int] | dict[str : float] | dict[str : int] = [],

surfaces : Surface | list[Surface] | dict[str : Surface] = [],

) -> None:

sum_qt = sum(qt if isinstance(qt , list) else [qt])

if isinstance(qt, float) or isinstance(qt, int):

sum_qt = qt

elif isinstance(qt, dict):

sum_qt = sum([v for v in qt.values ()])

elif isinstance(qt, list):

sum_qt = sum(qt)

else:

raise ValueError("Invalid␣format␣for␣’surfaces ’:␣must␣be␣a␣Surface ,␣list␣of␣

Surfaces ,␣or␣a␣dict␣of␣Surfaces.␣Quitting.")

self.surfaces = clean_surfaces_input(surfaces)

sum_qs = sum([surf.direct_solar_thermal_heat_received(loc) for surf in self.surfaces]

)

if sum_qt > sum_qs:

raise ValueError(f"The␣sum␣of␣qt␣(~{ sum_qt :.0f}␣W),␣the␣power␣pulled␣from␣the␣

solar␣absorber ,␣is␣greater␣than␣the␣energy␣that␣it␣is␣receiving␣(~{ sum_qs :.0f

}).␣Quitting.")

def absorber_balance(T_H):

nonlocal loc , qt , self

Q_W = sum_qt

Q_S = sum_qs

Q_E = sum([surf.radiated_heat(T_H) for surf in self.surfaces])

return Q_E - Q_W - Q_S

T_H = newton(absorber_balance , 273.15 , tol = 1e-3, maxiter = 2000)

self.q_incident = sum([surf.direct_solar_thermal_heat_received(loc) for surf in self.

surfaces])

self.q_emitted = sum([surf.radiated_heat(T_H) for surf in self.surfaces])

for surf in self.surfaces:

surf.T = T_H

super().__init__(sum_qt , T_H)

class Photovoltaic(PowerSource):

non_optimal_illumination_factor = 0.8

c_a_at_earth = -3.4e-2

c_t = -0.2e-2

reflection_fraction = 5e-3

temperature_limits = {"min" : -100 + 273.15 , "max" : 150 + 273.15}

def __init__(

self ,

22

loc ,

eta_lab ,

T_ref ,

age_years ,

surfaces : Surface | list[Surface] | dict[str : Surface] = [],

) -> None:

self.loc = loc

self.eta_lab = eta_lab

self.T_ref = T_ref

self.age_years = age_years

self.surfaces = clean_surfaces_input(surfaces)

for surf in self.surfaces:

if surf.absorptance != 0:

print("Setting␣absorptance␣of␣surface␣assigned␣to␣photovoltaic␣power␣source␣to

␣zero␣to␣prevent␣double␣counting␣of␣heat␣load.␣Remember␣to␣include␣this␣

surface␣as␣a␣radiator␣in␣the␣ThermalLoop!")

surf.absorptance = 0

self.total_collection_area = sum([surf.sun_facing_area for surf in self.surfaces])

self.total_radiative_area = sum([surf.emission_area for surf in self.surfaces])

super().__init__ ()

def eta_N(self):

return self.non_optimal_illumination_factor * self.eta_lab

def c_a(self):

return self.c_a_at_earth / (self.loc.distance_from_sun_au **2)

def eta_overall(self , T_C):

if T_C <= self.temperature_limits["min"]:

return 0.0

elif T_C >= self.temperature_limits["max"]:

return 0.0

if not "eta_non_thermal" in self.__dict__:

self.eta_non_thermal = self.eta_N () + self.age_years * self.c_a()

self.temperature_limits["max"] = (- self.eta_non_thermal / self.c_t) + self.T_ref

print(f"Panel␣max␣temperature␣=␣{self.temperature_limits[’max ’]:.1f}␣K␣({self.

temperature_limits[’max ’]␣-␣273.15:.1f}␣degC)")

return self.eta_non_thermal + self.c_t * (T_C - self.T_ref)

def w(self , T_C = None):

if T_C == None:

T_C = self.T_C

return self.eta_overall(T_C) * self.loc.q_S * self.total_collection_area

def q_w(self , T_C = None):

if T_C == None:

T_C = self.T_C

23

return (1 - self.reflection_fraction) * (1 - self.eta_overall(T_C)) * self.loc.q_S *

self.total_collection_area

def __repr__(self):

return "\n\n".join([str(surf) for surf in self.surfaces]) + f"\nUseful␣Power␣=␣{self.w

():.1f}␣W\nWaste␣Heat␣=␣{self.q_w():.1f}␣W"

class ThermalLoop:

def __init__(

self ,

loc : Location ,

heat_sources : HeatSource | list[HeatSource] |dict[str : HeatSource] = {},

radiators : Surface | list[Surface] | dict[str : Surface] = [],

) -> None:

self.loc = loc

self._T_C = None

if isinstance(heat_sources , HeatSource):

self.heat_sources = [heat_sources]

elif isinstance(heat_sources , dict):

self.heat_sources = heat_sources.values ()

elif isinstance(heat_sources , list):

self.heat_sources = heat_sources

else:

raise ValueError("Invalid␣format␣for␣’heat_sources ’:␣must␣be␣a␣HeatSource ,␣list␣of

␣HeatSources ,␣or␣a␣dict␣of␣HeatSources.␣Quitting.")

self.radiators = clean_surfaces_input(radiators)

hsT_H = [hs.T_H for hs in self.heat_sources if "T_H" in hs.__dict__]

hsT_H.append (10e3)

self.min_T_H = min(hsT_H)

@property

def T_C(self):

if not self._T_C:

self._T_C = self.equilibrate ()

return self._T_C

def __radiator_balance(self , T_C):

Q_W = sum([hs.q_w(T_C) for hs in self.heat_sources])

Q_S = sum([surf.direct_solar_thermal_heat_received(self.loc) for surf in self.

radiators])

Q_E = sum([surf.radiated_heat(T_C) for surf in self.radiators])

return Q_E - Q_W - Q_S

def equilibrate(self , initial_value = 273.15 , tol = 1e-3):

try:

self._T_C = toms748(self.__radiator_balance , 0, self.min_T_H , rtol = tol)

except ValueError:

24

raise ValueError("A␣radiator␣temperature␣cannot␣be␣found␣that␣is␣less␣than␣the␣

minimum␣T_H␣in␣the␣system.␣You␣need␣a␣larger ,␣more␣emissive ,␣or␣less␣

absorptive␣radiator.␣Quitting.")

for surf in self.radiators:

surf.set_T(self.T_C)

for hs in self.heat_sources:

hs.T_C = self.T_C

return self.T_C

def __repr__(self):

return "heat␣sources :\n" + "\n\n".join([str(heat_source) for heat_source in self.

heat_sources]) + "\n\nradiators :\n" + "\n".join([str(rad) for rad in self.

radiators])

if __name__ == "__main__":

##--Define the location in space

loc = Location(distance_from_sun_au = 0.25)

##--Thermal Loop 1

##----Define power sources:

##------Define a nuclear reactor:

reactor_1 = Reactor(brand = "fission_frontiers", model = "wyvern")

##------Define a Solar -Thermal Power system

absorber_surface_1 = Surface(emission_area = 1000, sun_facing_area = 1000, emissivity =

0.12, absorptance = 0.96, angle_to_sun_deg = 25)

absorber_surface_2 = Surface(emission_area = 200, sun_facing_area = 200, emissivity =

0.12, absorptance = 0.96, angle_to_sun_deg = 20)

solar_thermal_1 = SolarAbsorber(loc , 1e6, [absorber_surface_1 , absorber_surface_2])

##----Define the shared radiators

radiator_1 = Surface (2 * 1000**2 , 1000**2 , 0.9, 0.09, 90)

radiator_2 = Surface (2 * 800**2 , 800**2 , 0.9, 0.09, 70, temperature_offset = -20)

radiator_3 = Surface (2 * 800**2 , 800**2 , 0.9, 0.09, 70, temperature_offset = -20)

##----Assemble a thermal -loop

thermal_loop_1 = ThermalLoop(loc , heat_sources = [reactor_1 , solar_thermal_1], radiators =

[radiator_1 , radiator_2 , radiator_3])

thermal_loop_1.equilibrate ()

##--Printing out the standard (rather inconvenient) format for a thermal loop object

print("thermal_loop_1:")

print(thermal_loop_1)

##--Thermal Loop 2

##----Define power sources for Thermal Loop 2:

pv_surface_1 = Surface (2 * 100, 100, 0.92, 0.12)

photovoltaic_1 = Photovoltaic(loc , 0.33, 25 + 273.25 , 0, pv_surface_1)

25

##--The photovoltaic panel surface will act as its own radiator to an extent , but it is

still necessary to tell ThermalLoop that it will act thus by passing it in.

##--You can also add additional radiators to your solar panels , for example via an active

cooling circuit. We include a negative temperature offset to represent that the panels

will be hotter than an external radiator since the heat will have to be moved from

the panel to the radiators

pv_rad = Surface (2000 , 1000, 0.78, 0.78, 90, temperature_offset = -10)

thermal_loop_2 = ThermalLoop(loc , heat_sources = photovoltaic_1 , radiators = [pv_surface_1

, pv_rad])

thermal_loop_2.equilibrate ()

##--You can also print out specific objects to make the data easier to understand

print("photovoltaic_1:")

print(photovoltaic_1)

print()

print("pv_rad:")

print(pv_rad)

print()

##--Operational Loop 1

atmospheric_heat_load_1 = HeatSource (100000)

atmospheric_heat_load_2 = HeatSource (200000)

operational_loop_rad_1 = Surface (2000, 1000, 0.92, 0.12, angle_to_sun_deg = 90,

temperature_offset = -20) ##--The sun facing area is half , but will actually fall to

zero because it is at 90 degrees to the sun

operational_loop_1 = ThermalLoop(loc , [atmospheric_heat_load_1 , atmospheric_heat_load_2],

[operational_loop_rad_1])

operational_loop_1.equilibrate ()

print("operational_loop_1:")

print(operational_loop_1)

##--We can see that this radiator is too big for this heat load , as the Cold -Side

Temperature perceived by the heat sources is 251.6 K (-23.6 degC) - a little chilly

for your residents!

26

	Introduction
	Power Systems
	Nuclear Power
	Photovoltaic
	Solar Thermal

	Space as a Heat Sink
	Emitted Heat
	Direct Solar Thermal Heat Received
	Indirect Solar Thermal Heat Received
	Planetary Thermal
	Net Heat Rate
	Thermal Equilibrium

	Radiator Design
	Primary Heat Load
	Nuclear
	Photovoltaic
	Solar Thermal

	Atmospheric Loop Heat Load
	A Word on Heat Pumps
	Additional Loops

	Conclusion
	ThermalSystem.py

